协慌网

登录 贡献 社区

确定整数平方根是否为整数的最快方法

我正在寻找最快的方法来确定一个long值是否是一个完美的正方形(即它的平方根是另一个整数):

  1. 我通过使用内置的Math.sqrt()函数以简单的方式完成了它,但我想知道是否有办法通过将自己限制为仅整数域来更快地完成它。
  2. 维护查找表是不切实际的(因为大约有 2 31.5 个整数,其平方小于 2 63 )。

这是我现在正在做的非常简单直接的方式:

public final static boolean isPerfectSquare(long n)
{
  if (n < 0)
    return false;

  long tst = (long)(Math.sqrt(n) + 0.5);
  return tst*tst == n;
}

注意:我在许多Project Euler问题中使用此函数。因此,没有其他人必须维护此代码。而这种微优化实际上可以产生影响,因为部分挑战是在不到一分钟的时间内完成每个算法,并且在某些问题中需要将此函数调用数百万次。


我尝试过不同的问题解决方案:

  • 经过详尽的测试后,我发现在 Math.sqrt()的结果中添加0.5是不必要的,至少在我的机器上没有。
  • 快速反平方根更快,但它给出了 n> = 410881 的错误结果。但是,正如BobbyShaftoe所建议的那样 ,我们可以使用 FISR hack 来获得 n <410881。
  • 牛顿的方法比Math.sqrt()慢一点。这可能是因为Math.sqrt()使用类似于牛顿方法的东西,但是在硬件中实现,因此它比在 Java 中快得多。此外,牛顿的方法仍然需要使用双打。
  • 一个改进的牛顿方法,使用了一些技巧,只涉及整数数学,需要一些黑客来避免溢出(我希望这个函数适用于所有正 64 位有符号整数),它仍然比Math.sqrt()Math.sqrt()
  • 二进制斩甚至更慢。这是有道理的,因为二进制斩波平均需要 16 遍才能找到 64 位数的平方根。
  • 根据约翰的测试,使用or语句在 C ++ 中比使用更快的switch ,但在 Java 和 C#似乎是没有什么区别orswitch
  • 我还尝试制作一个查找表(作为 64 个布尔值的私有静态数组)。然后我会说if(lookup[(int)(n&0x3F)]) { test } else return false;而不是 switch 或or语句if(lookup[(int)(n&0x3F)]) { test } else return false; 。令我惊讶的是,这只是(稍微)慢了。这是因为在 Java 中检查了数组边界

答案

我发现一种方法比你的 6bits + Carmack + sqrt 代码快〜35%,至少用我的 CPU(x86)和编程语言(C / C ++)。您的结果可能会有所不同,尤其是因为我不知道 Java 因素将如何发挥作用。

我的方法有三个方面:

  1. 首先,筛选出明显的答案。这包括负数并查看最后 4 位。 (我发现看到最后六个没有帮助。)我也回答是 0.(在阅读下面的代码时,请注意我的输入是int64 x 。)
    if( x < 0 || (x&2) || ((x & 7) == 5) || ((x & 11) == 8) )
        return false;
    if( x == 0 )
        return true;
  2. 接下来,检查它是否是方模 255 = 3 * 5 * 17. 因为这是三个不同质数的乘积,所以只有大约 1/8 的 mod 255 残差是正方形。但是,根据我的经验,调用模运算符(%)的成本高于获得的效益,因此我使用涉及 255 = 2 ^ 8-1 的位技巧来计算残差。 (无论好坏,我没有使用从单词中读取单个字节的技巧,只是按位 - 并且移位。)
    int64 y = x;
    y = (y & 4294967295LL) + (y >> 32); 
    y = (y & 65535) + (y >> 16);
    y = (y & 255) + ((y >> 8) & 255) + (y >> 16);
    // At this point, y is between 0 and 511.  More code can reduce it farther.
    要实际检查残差是否为正方形,我在预先计算的表格中查找答案。
    if( bad255[y] )
        return false;
    // However, I just use a table of size 512
  3. 最后,尝试使用类似于Hensel 引理的方法计算平方根。 (我不认为它直接适用,但它可以进行一些修改。)在这之前,我用二分搜索来划分 2 的所有幂:
    if((x & 4294967295LL) == 0)
        x >>= 32;
    if((x & 65535) == 0)
        x >>= 16;
    if((x & 255) == 0)
        x >>= 8;
    if((x & 15) == 0)
        x >>= 4;
    if((x & 3) == 0)
        x >>= 2;
    此时,对于我们的数字为正方形,它必须是 1 mod 8。
    if((x & 7) != 1)
        return false;
    Hensel 引理的基本结构如下。 (注意:未经测试的代码; 如果不起作用,请尝试 t = 2 或 8。)
    int64 t = 4, r = 1;
    t <<= 1; r += ((x - r * r) & t) >> 1;
    t <<= 1; r += ((x - r * r) & t) >> 1;
    t <<= 1; r += ((x - r * r) & t) >> 1;
    // Repeat until t is 2^33 or so.  Use a loop if you want.
    我们的想法是,在每次迭代中,将一位添加到 r,即 x 的 “当前” 平方根; 每个平方根的精确模数为 2 的越来越大的幂,即 t / 2。最后,r 和 t / 2-r 将是 x modulo t / 2 的平方根。 (注意,如果 r 是 x 的平方根,那么 - r 也是如此。即使是模数也是如此,但要注意,以某些数为模,事物甚至可以有 2 个以上的平方根; 值得注意的是,这包括 2 的幂。 )因为我们的实际平方根小于 2 ^ 32,所以我们实际上可以检查 r 或 t / 2-r 是否是真正的平方根。在我的实际代码中,我使用以下修改循环:
    int64 r, t, z;
    r = start[(x >> 3) & 1023];
    do {
        z = x - r * r;
        if( z == 0 )
            return true;
        if( z < 0 )
            return false;
        t = z & (-z);
        r += (z & t) >> 1;
        if( r > (t >> 1) )
            r = t - r;
    } while( t <= (1LL << 33) );
    这里的加速以三种方式获得:预先计算的起始值(相当于循环的~ 10 次迭代),循环的早期退出以及跳过一些 t 值。对于最后一部分,我看一下z = r - x * x ,并将 t 设置为 2 的最大幂,用一个技巧划分 z。这允许我跳过不会影响 r 值的 t 值。在我的情况下,预先计算的起始值选出 “最小正” 平方根模 8192。

即使这段代码对你来说效率不高,我希望你喜欢它包含的一些想法。随后是完整的,经过测试的代码,包括预先计算的表格。

typedef signed long long int int64;

int start[1024] =
{1,3,1769,5,1937,1741,7,1451,479,157,9,91,945,659,1817,11,
1983,707,1321,1211,1071,13,1479,405,415,1501,1609,741,15,339,1703,203,
129,1411,873,1669,17,1715,1145,1835,351,1251,887,1573,975,19,1127,395,
1855,1981,425,453,1105,653,327,21,287,93,713,1691,1935,301,551,587,
257,1277,23,763,1903,1075,1799,1877,223,1437,1783,859,1201,621,25,779,
1727,573,471,1979,815,1293,825,363,159,1315,183,27,241,941,601,971,
385,131,919,901,273,435,647,1493,95,29,1417,805,719,1261,1177,1163,
1599,835,1367,315,1361,1933,1977,747,31,1373,1079,1637,1679,1581,1753,1355,
513,1539,1815,1531,1647,205,505,1109,33,1379,521,1627,1457,1901,1767,1547,
1471,1853,1833,1349,559,1523,967,1131,97,35,1975,795,497,1875,1191,1739,
641,1149,1385,133,529,845,1657,725,161,1309,375,37,463,1555,615,1931,
1343,445,937,1083,1617,883,185,1515,225,1443,1225,869,1423,1235,39,1973,
769,259,489,1797,1391,1485,1287,341,289,99,1271,1701,1713,915,537,1781,
1215,963,41,581,303,243,1337,1899,353,1245,329,1563,753,595,1113,1589,
897,1667,407,635,785,1971,135,43,417,1507,1929,731,207,275,1689,1397,
1087,1725,855,1851,1873,397,1607,1813,481,163,567,101,1167,45,1831,1205,
1025,1021,1303,1029,1135,1331,1017,427,545,1181,1033,933,1969,365,1255,1013,
959,317,1751,187,47,1037,455,1429,609,1571,1463,1765,1009,685,679,821,
1153,387,1897,1403,1041,691,1927,811,673,227,137,1499,49,1005,103,629,
831,1091,1449,1477,1967,1677,697,1045,737,1117,1737,667,911,1325,473,437,
1281,1795,1001,261,879,51,775,1195,801,1635,759,165,1871,1645,1049,245,
703,1597,553,955,209,1779,1849,661,865,291,841,997,1265,1965,1625,53,
1409,893,105,1925,1297,589,377,1579,929,1053,1655,1829,305,1811,1895,139,
575,189,343,709,1711,1139,1095,277,993,1699,55,1435,655,1491,1319,331,
1537,515,791,507,623,1229,1529,1963,1057,355,1545,603,1615,1171,743,523,
447,1219,1239,1723,465,499,57,107,1121,989,951,229,1521,851,167,715,
1665,1923,1687,1157,1553,1869,1415,1749,1185,1763,649,1061,561,531,409,907,
319,1469,1961,59,1455,141,1209,491,1249,419,1847,1893,399,211,985,1099,
1793,765,1513,1275,367,1587,263,1365,1313,925,247,1371,1359,109,1561,1291,
191,61,1065,1605,721,781,1735,875,1377,1827,1353,539,1777,429,1959,1483,
1921,643,617,389,1809,947,889,981,1441,483,1143,293,817,749,1383,1675,
63,1347,169,827,1199,1421,583,1259,1505,861,457,1125,143,1069,807,1867,
2047,2045,279,2043,111,307,2041,597,1569,1891,2039,1957,1103,1389,231,2037,
65,1341,727,837,977,2035,569,1643,1633,547,439,1307,2033,1709,345,1845,
1919,637,1175,379,2031,333,903,213,1697,797,1161,475,1073,2029,921,1653,
193,67,1623,1595,943,1395,1721,2027,1761,1955,1335,357,113,1747,1497,1461,
1791,771,2025,1285,145,973,249,171,1825,611,265,1189,847,1427,2023,1269,
321,1475,1577,69,1233,755,1223,1685,1889,733,1865,2021,1807,1107,1447,1077,
1663,1917,1129,1147,1775,1613,1401,555,1953,2019,631,1243,1329,787,871,885,
449,1213,681,1733,687,115,71,1301,2017,675,969,411,369,467,295,693,
1535,509,233,517,401,1843,1543,939,2015,669,1527,421,591,147,281,501,
577,195,215,699,1489,525,1081,917,1951,2013,73,1253,1551,173,857,309,
1407,899,663,1915,1519,1203,391,1323,1887,739,1673,2011,1585,493,1433,117,
705,1603,1111,965,431,1165,1863,533,1823,605,823,1179,625,813,2009,75,
1279,1789,1559,251,657,563,761,1707,1759,1949,777,347,335,1133,1511,267,
833,1085,2007,1467,1745,1805,711,149,1695,803,1719,485,1295,1453,935,459,
1151,381,1641,1413,1263,77,1913,2005,1631,541,119,1317,1841,1773,359,651,
961,323,1193,197,175,1651,441,235,1567,1885,1481,1947,881,2003,217,843,
1023,1027,745,1019,913,717,1031,1621,1503,867,1015,1115,79,1683,793,1035,
1089,1731,297,1861,2001,1011,1593,619,1439,477,585,283,1039,1363,1369,1227,
895,1661,151,645,1007,1357,121,1237,1375,1821,1911,549,1999,1043,1945,1419,
1217,957,599,571,81,371,1351,1003,1311,931,311,1381,1137,723,1575,1611,
767,253,1047,1787,1169,1997,1273,853,1247,413,1289,1883,177,403,999,1803,
1345,451,1495,1093,1839,269,199,1387,1183,1757,1207,1051,783,83,423,1995,
639,1155,1943,123,751,1459,1671,469,1119,995,393,219,1743,237,153,1909,
1473,1859,1705,1339,337,909,953,1771,1055,349,1993,613,1393,557,729,1717,
511,1533,1257,1541,1425,819,519,85,991,1693,503,1445,433,877,1305,1525,
1601,829,809,325,1583,1549,1991,1941,927,1059,1097,1819,527,1197,1881,1333,
383,125,361,891,495,179,633,299,863,285,1399,987,1487,1517,1639,1141,
1729,579,87,1989,593,1907,839,1557,799,1629,201,155,1649,1837,1063,949,
255,1283,535,773,1681,461,1785,683,735,1123,1801,677,689,1939,487,757,
1857,1987,983,443,1327,1267,313,1173,671,221,695,1509,271,1619,89,565,
127,1405,1431,1659,239,1101,1159,1067,607,1565,905,1755,1231,1299,665,373,
1985,701,1879,1221,849,627,1465,789,543,1187,1591,923,1905,979,1241,181};

bool bad255[512] =
{0,0,1,1,0,1,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,1,0,1,1,1,1,0,1,
 1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,0,1,1,1,1,0,1,1,1,
 0,1,0,1,1,0,0,1,1,1,1,1,0,1,1,1,1,0,1,1,0,0,1,1,1,1,1,1,1,1,0,1,
 1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,0,1,1,1,0,1,1,1,1,0,0,1,1,1,1,1,1,
 1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,0,1,1,0,1,1,1,1,1,
 1,1,1,1,1,1,0,1,1,0,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,
 1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,
 1,0,1,1,1,0,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,
 0,0,1,1,0,1,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,1,0,1,1,1,1,0,1,
 1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,0,1,1,1,1,0,1,1,1,
 0,1,0,1,1,0,0,1,1,1,1,1,0,1,1,1,1,0,1,1,0,0,1,1,1,1,1,1,1,1,0,1,
 1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,0,1,1,1,0,1,1,1,1,0,0,1,1,1,1,1,1,
 1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,0,1,1,0,1,1,1,1,1,
 1,1,1,1,1,1,0,1,1,0,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,
 1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,
 1,0,1,1,1,0,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,
 0,0};

inline bool square( int64 x ) {
    // Quickfail
    if( x < 0 || (x&2) || ((x & 7) == 5) || ((x & 11) == 8) )
        return false;
    if( x == 0 )
        return true;

    // Check mod 255 = 3 * 5 * 17, for fun
    int64 y = x;
    y = (y & 4294967295LL) + (y >> 32);
    y = (y & 65535) + (y >> 16);
    y = (y & 255) + ((y >> 8) & 255) + (y >> 16);
    if( bad255[y] )
        return false;

    // Divide out powers of 4 using binary search
    if((x & 4294967295LL) == 0)
        x >>= 32;
    if((x & 65535) == 0)
        x >>= 16;
    if((x & 255) == 0)
        x >>= 8;
    if((x & 15) == 0)
        x >>= 4;
    if((x & 3) == 0)
        x >>= 2;

    if((x & 7) != 1)
        return false;

    // Compute sqrt using something like Hensel's lemma
    int64 r, t, z;
    r = start[(x >> 3) & 1023];
    do {
        z = x - r * r;
        if( z == 0 )
            return true;
        if( z < 0 )
            return false;
        t = z & (-z);
        r += (z & t) >> 1;
        if( r > (t  >> 1) )
            r = t - r;
    } while( t <= (1LL << 33) );

    return false;
}

我参加派对的时间已经很晚了,但我希望能提供更好的答案; 更短和(假设我的基准测试是正确的)也快得多

long goodMask; // 0xC840C04048404040 computed below
{
    for (int i=0; i<64; ++i) goodMask |= Long.MIN_VALUE >>> (i*i);
}

public boolean isSquare(long x) {
    // This tests if the 6 least significant bits are right.
    // Moving the to be tested bit to the highest position saves us masking.
    if (goodMask << x >= 0) return false;
    final int numberOfTrailingZeros = Long.numberOfTrailingZeros(x);
    // Each square ends with an even number of zeros.
    if ((numberOfTrailingZeros & 1) != 0) return false;
    x >>= numberOfTrailingZeros;
    // Now x is either 0 or odd.
    // In binary each odd square ends with 001.
    // Postpone the sign test until now; handle zero in the branch.
    if ((x&7) != 1 | x <= 0) return x == 0;
    // Do it in the classical way.
    // The correctness is not trivial as the conversion from long to double is lossy!
    final long tst = (long) Math.sqrt(x);
    return tst * tst == x;
}

第一次测试快速捕获大多数非正方形。它使用一个 64 项的表包装,因此没有数组访问成本(间接和边界检查)。对于均匀随机的long ,在此结束的概率为 81.25%。

第二个测试捕获了因子分解中具有奇数个二进制数的所有数字。方法Long.numberOfTrailingZeros非常快,因为它被 JIT 编辑成单个 i86 指令。

在删除尾随零之后,第三个测试以二进制形式处理以 011,101 或 111 结尾的数字,这些数字不是完美的正方形。它也关心负数,也处理 0。

最终的测试回归到double算术。由于double只有 53 位尾数,因此从longdouble的转换包括舍入大值。尽管如此,测试是正确的(除非证明是错误的)。

试图纳入 mod255 的想法是不成功的。

你必须做一些基准测试。最佳算法取决于输入的分布。

您的算法可能几乎是最优的,但您可能希望在调用平方根例程之前快速检查以排除某些可能性。例如,通过逐位 “和” 来查看十六进制数字的最后一位数字。完美的正方形只能在基数 16 中以 0,1,4 或 9 结束。因此,对于 75%的输入(假设它们是均匀分布的),您可以避免调用平方根来换取一些非常快速的比特。

Kip 对实现 hex 技巧的以下代码进行了基准测试。测试数字 1 到 100,000,000 时,此代码的运行速度是原始代码的两倍。

public final static boolean isPerfectSquare(long n)
{
    if (n < 0)
        return false;

    switch((int)(n & 0xF))
    {
    case 0: case 1: case 4: case 9:
        long tst = (long)Math.sqrt(n);
        return tst*tst == n;

    default:
        return false;
    }
}

当我在 C ++ 中测试类似代码时,它实际上比原来运行得慢。但是,当我删除 switch 语句时,十六进制技巧再次使代码快两倍。

int isPerfectSquare(int n)
{
    int h = n & 0xF;  // h is the last hex "digit"
    if (h > 9)
        return 0;
    // Use lazy evaluation to jump out of the if statement as soon as possible
    if (h != 2 && h != 3 && h != 5 && h != 6 && h != 7 && h != 8)
    {
        int t = (int) floor( sqrt((double) n) + 0.5 );
        return t*t == n;
    }
    return 0;
}

消除 switch 语句对 C#代码几乎没有影响。