协慌网

登录 贡献 社区

将字典列表转换为 pandas DataFrame

我有一个这样的词典列表:

[{'points': 50, 'time': '5:00', 'year': 2010}, 
{'points': 25, 'time': '6:00', 'month': "february"}, 
{'points':90, 'time': '9:00', 'month': 'january'}, 
{'points_h1':20, 'month': 'june'}]

我想把它变成这样的 pandas DataFrame

month  points  points_h1  time  year
0       NaN      50        NaN  5:00  2010
1  february      25        NaN  6:00   NaN
2   january      90        NaN  9:00   NaN
3      june     NaN         20   NaN   NaN

注意:列的顺序无关紧要。

如何将字典列表转换为如上所述的 pandas DataFrame?

答案

假设d是您的字典列表,只需:

df = pd.DataFrame(d)

注意:这不适用于嵌套数据。

如何将字典列表转换为 Pandas DataFrame?

其他答案是正确的,但是就这些方法的优点和局限性而言,并没有太多解释。这篇文章的目的是展示在不同情况下这些方法的示例,讨论何时使用(何时不使用),并提出替代方案。


DataFrame()DataFrame.from_records().from_dict()

根据数据的结构和格式,在某些情况下,这三种方法要么全部起作用,要么某些方法比其他方法更好,或者有些根本不起作用。

考虑一个非常人为的例子。

np.random.seed(0)
data = pd.DataFrame(
    np.random.choice(10, (3, 4)), columns=list('ABCD')).to_dict('r')

print(data)
[{'A': 5, 'B': 0, 'C': 3, 'D': 3},
 {'A': 7, 'B': 9, 'C': 3, 'D': 5},
 {'A': 2, 'B': 4, 'C': 7, 'D': 6}]

该列表由 “记录” 组成,其中包含每个键。这是您可能遇到的最简单的情况。

# The following methods all produce the same output.
pd.DataFrame(data)
pd.DataFrame.from_dict(data)
pd.DataFrame.from_records(data)

   A  B  C  D
0  5  0  3  3
1  7  9  3  5
2  2  4  7  6

词典定位词: orient='index' / 'columns'

在继续之前,重要的是要区分不同类型的字典方向和熊猫的支持。有两种主要类型:“列” 和 “索引”。

orient='columns'
方向为 “列” 的字典的键将与等效 DataFrame 中的列相对应。

例如, data以 “列” 方向显示。

data_c = [
 {'A': 5, 'B': 0, 'C': 3, 'D': 3},
 {'A': 7, 'B': 9, 'C': 3, 'D': 5},
 {'A': 2, 'B': 4, 'C': 7, 'D': 6}]
pd.DataFrame.from_dict(data_c, orient='columns')

   A  B  C  D
0  5  0  3  3
1  7  9  3  5
2  2  4  7  6

注意:如果使用的是pd.DataFrame.from_records ,则假定方向为 “列”(否则无法指定),并且将相应地加载字典。

orient='index'
以此方向,键被假定为对应于索引值。这种数据最适合pd.DataFrame.from_dict

data_i ={
 0: {'A': 5, 'B': 0, 'C': 3, 'D': 3},
 1: {'A': 7, 'B': 9, 'C': 3, 'D': 5},
 2: {'A': 2, 'B': 4, 'C': 7, 'D': 6}}
pd.DataFrame.from_dict(data_i, orient='index')

   A  B  C  D
0  5  0  3  3
1  7  9  3  5
2  2  4  7  6

在 OP 中不考虑这种情况,但仍然有用。

设置自定义索引

如果需要在结果 DataFrame 上使用自定义索引,则可以使用index=...参数进行设置。

pd.DataFrame(data, index=['a', 'b', 'c'])
# pd.DataFrame.from_records(data, index=['a', 'b', 'c'])

   A  B  C  D
a  5  0  3  3
b  7  9  3  5
c  2  4  7  6

pd.DataFrame.from_dict不支持此功能。

处理缺少的键 / 列

当处理缺少键 / 列值的字典时,所有方法都是开箱即用的。例如,

data2 = [
     {'A': 5, 'C': 3, 'D': 3},
     {'A': 7, 'B': 9, 'F': 5},
     {'B': 4, 'C': 7, 'E': 6}]
# The methods below all produce the same output.
pd.DataFrame(data2)
pd.DataFrame.from_dict(data2)
pd.DataFrame.from_records(data2)

     A    B    C    D    E    F
0  5.0  NaN  3.0  3.0  NaN  NaN
1  7.0  9.0  NaN  NaN  NaN  5.0
2  NaN  4.0  7.0  NaN  6.0  NaN

读取列子集

“如果我不想在每一列中阅读该怎么办”? columns=...参数轻松地指定它。

例如,从data2示例字典中,如果您只想读取列 “A”,“D” 和 “F”,则可以通过传递一个列表来做到这一点:

pd.DataFrame(data2, columns=['A', 'D', 'F'])
# pd.DataFrame.from_records(data2, columns=['A', 'D', 'F'])

     A    D    F
0  5.0  3.0  NaN
1  7.0  NaN  5.0
2  NaN  NaN  NaN

具有默认方向 “列” 的pd.DataFrame.from_dict不支持此功能。

pd.DataFrame.from_dict(data2, orient='columns', columns=['A', 'B'])
ValueError: cannot use columns parameter with orient='columns'

读取行的子集

这些方法都不直接支持。您将必须遍历数据,并在进行迭代时就地执行反向删除。例如,只提取0 和从第二data2以上,可以使用:

rows_to_select = {0, 2}
for i in reversed(range(len(data2))):
    if i not in rows_to_select:
        del data2[i]

pd.DataFrame(data2)
# pd.DataFrame.from_dict(data2)
# pd.DataFrame.from_records(data2)

     A    B  C    D    E
0  5.0  NaN  3  3.0  NaN
1  NaN  4.0  7  NaN  6.0

灵丹妙药:嵌套数据的json_normalize

上面概述的方法的一种强大而强大的替代方法是json_normalize函数,该函数可用于词典列表(记录),此外还可以处理嵌套词典。

pd.json_normalize(data)

   A  B  C  D
0  5  0  3  3
1  7  9  3  5
2  2  4  7  6
pd.json_normalize(data2)

     A    B  C    D    E
0  5.0  NaN  3  3.0  NaN
1  NaN  4.0  7  NaN  6.0

同样,请记住,传递给json_normalize的数据必须采用字典列表(记录)格式。

如前所述, json_normalize也可以处理嵌套字典。这是从文档中获取的示例。

data_nested = [
  {'counties': [{'name': 'Dade', 'population': 12345},
                {'name': 'Broward', 'population': 40000},
                {'name': 'Palm Beach', 'population': 60000}],
   'info': {'governor': 'Rick Scott'},
   'shortname': 'FL',
   'state': 'Florida'},
  {'counties': [{'name': 'Summit', 'population': 1234},
                {'name': 'Cuyahoga', 'population': 1337}],
   'info': {'governor': 'John Kasich'},
   'shortname': 'OH',
   'state': 'Ohio'}
]
pd.json_normalize(data_nested, 
                          record_path='counties', 
                          meta=['state', 'shortname', ['info', 'governor']])

         name  population    state shortname info.governor
0        Dade       12345  Florida        FL    Rick Scott
1     Broward       40000  Florida        FL    Rick Scott
2  Palm Beach       60000  Florida        FL    Rick Scott
3      Summit        1234     Ohio        OH   John Kasich
4    Cuyahoga        1337     Ohio        OH   John Kasich

metarecord_path参数的更多信息,请查阅文档。


总结

这是上面讨论的所有方法的表格,以及受支持的功能部件 / 功能。

在此处输入图片说明

* 使用orient='columns'然后转置以获得与orient='index'相同的效果。

在熊猫 16.2 中,我必须执行pd.DataFrame.from_records(d)才能使其正常工作。